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(WCRP) Working Group on Coupled Modelling (WGCM) for their roles in making 

available the WCRP CMIP3 multi-model dataset. Support of this dataset is 
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same publication might refer to the CMIP3 data with terms such as “CMIP3 data,” 

“the CMIP3 multi-model dataset,” “the CMIP3 archive,” or the “CMIP3 dataset.” 

b.	 For Coupled Model Intercomparison Project phase 5 (CMIP5), the model output 

should be referred to as “the CMIP5 multi-model ensemble 

[archive/output/results/of simulations/dataset/ ...].” In publications, you should 

include a table (referred to below as Table XX) listing the models and institutions 

that provided model output used in your study. In this table, and as appropriate in 

figure legends, you should use the CMIP5 “official” model names found in 

“CMIP5 Modeling Groups and their Terms of Use” (http://cmip­

pcmdi.llnl.gov/cmip5/docs/CMIP5_modeling_groups.pdf). In addition, an 

acknowledgment similar to the following should be included in your publication: 
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2.	 Second, generally acknowledge this archive as “Downscaled CMIP3 and CMIP5 Climate 
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downscaled climate and hydrology data from the archive, please use the following 
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a.	 for BCSD CMIP3 climate: Maurer, E.P., L. Brekke, T. Pruitt, and P.B. Duffy, 

2007, “Fine-resolution climate projections enhance regional climate change impact 
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b.	 for BCSD CMIP3 hydrology: Reclamation, 2011, West-Wide Climate Risk 

Assessments: Bias-Corrected and Spatially Downscaled Surface Water Projections, 

Technical Memorandum No. 86-68210-2011-01, prepared by the U.S. Department 

of the Interior, Bureau of Reclamation, Technical Services Center, Denver, 

Colorado, 138 p. 

c.	 for BCSD CMIP5 climate: Provide citation to: Reclamation, 2013. Downscaled 

CMIP3 and CMIP5 Climate Projections: Release of Downscaled CMIP5 Climate 

Projections, Comparison with Preceding Information, and Summary of User Needs. 

U.S. Department of the Interior, Bureau of Reclamation, 104 p., available at: 

http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/techmemo/downscaled_ 

climate.pdf. 

d.	 for BCSD CMIP5 hydrology: Reclamation, 2014. Downscaled CMIP3 and CMIP5 

Hydrology Projections - Release of Hydrology Projections, Comparison with 

Preceding Information, and Summary of User Needs. U.S. Department of the 

Interior, Bureau of Reclamation,104 p., available at: 

http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/techmemo/downscaled_ 

climate.pdf. 

e.	 for the locally constructed analogs method (LOCA) CMIP5 projections: 

Pierce, D. W., D. R. Cayan, and B. L. Thrasher, Statistical Downscaling Using 

Localized Constructed Analogs (LOCA)*, Journal of Hydrometeorology, 15(6), 

2558-2585, 2014; and Pierce, D. W., D. R. Cayan, E. P. Maurer, J. T. Abatzoglou, 

and K. C. Hegewisch, 2015: Improved bias correction techniques for hydrological 

simulations of climate change. J. Hydrometeorology, v. 16, p. 2421-2442. 

DOI: http://dx.doi.org/10.1175/JHM-D-14-0236.1 
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2 This Addendum 

This document is an addendum to the report “Downscaled CMIP3 and CMIP5 Climate 

Projections: Release of Downscaled CMIP5 Climate Projections, Comparison with Preceding 

Information, and Summary of User Needs” [Bureau of Reclamation, 2013].  The reader is referred 

to that document for full descriptions of the CMIP archives as well as the BCCA and BCSD 

methods. For further details the reader is referred to the original citations for each downscaling 

method, listed below in the Introduction section. This report provides a high level introduction to 

three down-scaling methods and a comparison of the methods for selected meteorological 

variables. 

3 LOCA Addition to Archive 

Table 1 shows CMIP5 models downscaled with the LOCA method and provided in the archive; 

32 models are included, with both RCP 4.5 and RCP 8.5 runs.  CMIP uses a series of letters and 

numbers to distinguish different model runs composing an ensemble.  A single ensemble member 

is included from each model, generally, member “r1i1p1”. However, some models only had the 

requisite daily data available from a different ensemble member, in which case that ensemble 

member was used instead. For example, models CCSM4, GISS-E2-R, and GISS-E2-H used 

ensemble member “r6i1p1” over the historical period, the ensemble member used appears in the 

name of the LOCA data file. 

Table 1: CMIP5 models provided in the archive for run r1i1p1 only. 

Model Model Model 

access1-0 csiro-mk3-6-0 inmcm4 
access1-3 ec-earth ipsl-cm5a-lr 
bcc-csm1-1 fgoals-g2 ipsl-cm5a-mr 
bcc-csm1-1-m gfdl-cm3 miroc-esm 
canesm2 gfdl-esm2g miroc-esm-chem 
ccsm4 gfdl-esm2m miroc5 
cesm1-bgc giss-e2-h mpi-esm-lr 
cesm1-cam5 giss-e2-r mpi-esm-mr 
cmcc-cm hadgem2-ao mri-cgcm3 
cmcc-cms hadgem2-cc r noresm1-m 
cnrm-cm5 hadgem2-es 

4 Introduction 

The purpose of this report is to provide a high level introduction and comparison of three daily 

datasets of downscaled climate projections from the Coupled Model Intercomparison Project 

phase 5 (CMIP5). The three datasets are based on the following downscaling methods: 

 Localized Constructed Analogs (LOCA) [Pierce et al., 2014] 

 Bias correction with spatial disaggregation (BCSDm) [Wood et al., 2004] 

 Bias correction with constructed analogs (BCCA) [Maurer et al., 2010] 
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This document accompanies the public release of the dataset produced with the localized 

constructed analogs (LOCA) method [Pierce et al., 2014] and is intended as a companion to the 

2013 Bureau of Reclamation report titled “Downscaled CMIP3 and CMIP5 Climate Projections” 

[Bureau of Reclamation, 2013].  The methods comparison includes three daily variables:  

precipitation (P); maximum temperature (Tmax)t; and minimum temperature (Tmin). This document 

is intended to present several salient features of these datasets but not to be an exhaustive 

comparison between the downscaled datasets presented here. 

4.1 Clarification of Terminology 

Bureau of Reclamation [2013] referred to various downscaling methods with the use of number 

“5” appended to the method name, denoting the downscaling of CMIP5 projections (as opposed to 

CMIP3). In this report, all the methods evaluated use CMIP5 projections; so the use of the 

appended number “5” is omitted.  Additionally, the bias correction with spatial disaggregation 

method is referred as BCSDm (following Gutmann et al. [2014]) to distinguish it from a variation 

of BCSD that is applied directly at a daily time step (BCSDd) [Thrasher et al., 2012]. 

5 Spatial Downscaling and Bias Correction Methods 

5.1 Spatial Downscaling 

Spatial downscaling refers to techniques that impart a finer resolution spatial structure to coarse 

resolution output of global climate models (GCMs). There are two predominant types of spatial 

downscaling – dynamical and statistical. Dynamical methods use GCM output as boundary 

conditions for finer resolution regional climate models, linking process-based physical 

relationships between small and large scale behavior.  While these methods may capture (possibly 

unobserved) nonstationary behaviors, they are computationally expensive and are not practical for 

downscaling of the large ensembles of century-long GCM runs that are of interest in many 

modern studies, on the continental scale. Statistical downscaling methods rely on historically 

observed statistical relationships between coarse- and fine-spatial scale patterns. Statistical 

methods typically produce a smaller set of output variables than dynamical methods but are much 

less computationally expensive. The three methods evaluated in this report are statistical 

techniques. 

5.2 Bias Correction 

Bias correction (BC) refers to techniques for removing the systematic errors (“biases”) that all 

GCMs produce in their output fields. Depending on the method, bias correction can be a separate 

step that is independent from the spatial downscaling (which is true for the methods described 

here) or an implicit part of the spatial downscaling technique. In the latter event the entire process 

is often simply termed “downscaling”. Here the steps are separate, so the term “downscaling” 

refers specifically to the spatial downscaling process, and the bias correction used in LOCA is 

described separately in section 5.3.2. 

5.3 Localized Constructed Analog (LOCA) 

Constructed Analog (CA) methods spatially downscale a GCM day by searching for a set of 

observed days that are similar to the GCM day when the observations are coarsened to the GCM 

grid (e.g., Hidalgo et al., 2008). The matching observed days are called analog days because they 

4
 



 
 

  

   

 

 

    

 

  

  

   

  

    

   

   

  

 

 

 

 

 

 

 

    

  

 

  

 

 

 

  

 

   

  

  

    

  

 

 

 

are analogous to the model day being spatially downscaled. Often, about 30 analog days are 

identified for each model day being downscaled. The original fine-resolution observations from 

the selected analog days are then combined to form the final spatially downscaled field; exactly 

how this is done depends on the method. 

In previous constructed analog techniques such as BCCA (e.g., Hidalgo et al., 2008) and MACA 

(Abatzoglou and Brown, 2012), the analog days represent the best matches (least RMSE) between 

the model and observed day evaluated over the entire domain being downscaled. The analog days 

are then combined by computing optimal weights such that the weighed sum of the analog days 

best reproduces the model day being downscaled. These same weights are then applied to the 

original fine-resolution observations from the analog days, producing the final spatially 

downscaled field (Maurer et al., 2010). A drawback of this approach is that as the domain size 

increases (say, to the size of the contiguous U.S. [CONUS]), it becomes increasingly difficult to 

find good analog days for the entire domain. Also, when downscaling precipitation, it becomes 

more likely that some of the analog days will have precipitation where the model day has none, 

which tends to produce spurious drizzle. Finally, linearly combining multiple analog days based 

on the best match over a large domain tends to miss localized extreme precipitation events, which 

can be critical to impacts. 

To address these issues a localized version of constructed analogs, LOCA, was developed (Pierce 

et al., 2014). Details are given below, but the key differences changes in LOCA are: 1) LOCA 

selects the 30 analog days in a synoptic-scale (~1000 km) region around the point being spatially 

downscaled to rather than across the entire domain. Different points in the domain will then be 

using different analog days. So, for example, there is no requirement that the observed analog day 

simultaneously match the model’s precipitation in Seattle and Miami, locations far enough away 

from each other that there is no meaningful physical connection between their weather. 2) Once 

the 30 analog days are selected, the one analog day of the 30 that best matches the model in a 

small area (~100 km) around the point being downscaled is chosen as the final analog day to use 

in that small area. Using only one analog day instead of a weighted sum of many analog days 

avoids the problems with spurious drizzle generation and damping of localized precipitation 

extremes. A key point of LOCA is that the final chosen analog day is the closest match to the 

GCM day over both synoptic length scales (~1000 km) and in the immediate neighborhood of the 

point being downscaled (~100 km). 

5.3.1 LOCA Spatial Downscaling Procedure 

Step 1. Develop analog pool points and spatial masks 

As noted above, LOCA differs from previous constructed analog techniques in its selection of 

analog days in a region (~1000 km) around the point being downscaled instead of over the entire 

domain. Conceptually, this could be done at every point. However selecting the analog days is the 

most computationally expensive part of constructed analog techniques. Going from selecting 

30 analog days for the entire domain (as done in BCCA) to 30 analog days at each point would be 

computationally prohibitive. It is also unnecessary, since the weather conditions in a 1000-km 

length scale region centered on, say, Los Angeles are almost identical to the weather conditions in 

a similar region centered on San Diego. Very nearly the same 30 analog days would be picked for 

both locations. 
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For computational efficiency, the 30 analog days are picked at a subset of points called the 

“analog pool points.” The analog pool points for a domain in the western U.S. are indicated by Xs 

in Figure 1. The same analog days are then used at all nearby coarse grid cells, as indicated by the 

colors in Fig. 1.  Pierce et al. [2014] conclude that the exact placement of the analog pool points 

does not matter as long as they are not too far apart (about 1 analog pool point per 3°x3° region), 

and the distribution is approximately equal across the domain. Again, developing the analog pool 

location is only done once for a given coarse grid. 

Figure 1.  Crosses indicate the analog day pool selection points; colors indicate the domain over which a 
point is used. Source: Pierce et al. [2014]. Note although this figure shows only the western United 
States, LOCA projections are available for the contiguous United States (CONUS). 

Step 2. Select analog days at the regional scale 

Up to now, it has been left vague exactly what surrounding ~1000 km length scale region LOCA 

uses when selecting the 30 analog days. (Again, for computational efficiency, this selection is 

done only at the analog day pool selection points.) One could, for example, use a simple circle 

with radius 1000 km centered on the analog pool point, and evaluate over that circle the RMSE 

match between each observed day and model day being downscaled. However, the idea of LOCA 

is that the selected analog days should be relevant to the point being downscaled. For example, if 

downscaling to Seattle, it is not relevant what the weather is in Miami, so the region used to pick 

the analog day should exclude Miami. On the other hand, the weather in Portland OR is likely 

related to the weather in Seattle, so Portland should be included in the region used to select analog 

days for Seattle. 

This motivates choosing the region for analog day selection to be locations where the weather is 

related to the point being downscaled. In the version of LOCA used to generate the data in the 

archive, a very simple criterion was used: a location is included if the Pearson correlation between 

the time series of the variable at that location and the time series of the variable at the point being 

downscaled is positive (anomalies are used in this calculation for temperature). This correlation is 

evaluated individually for every variable and every season [December-February (DJF), March-

May (MAM), June-August (JJA), and September-November (SON)]. 
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As an example, the pink area in Figure 2 shows the domain used for picking analog days for a 

location near Seattle (cross) when downscaling precipitation in MAM. Contours in Figure 2 show 

the correlation values > 0 between time series of MAM precipitation at Seattle and all other 

locations in the western U.S. Using a cutoff of zero is conservative in the sense that a relatively 

wide region is considered when forming the analogs, which makes LOCA’s analog day selection 

process a less drastic change from the existing BCCA approach. Other approaches, such as using 

smaller regions based on correlation values that pass a statistical significance test, could also be 

contemplated. (Although it should be noted that given a training data set consisting of 50 years of 

daily data, significant correlations are in the range of 0.05, even taking typical synoptic timescales 

into account.) 

Figure 2. Example spatial mask for spring (MAM) precipitation at analog pool point 29 (cross). Pink area 
shows where the mask is 1; gray areas show where the mask is 0. The mask is set to 1 at every location 
that has a Pearson correlation with the time series at the analog pool point that is > 0. Contour lines show 
correlation coefficient values between the time series at the analog point location (cross) and all other 
points in the domain. Source: Pierce et al. [2014]. 

The match between the model day being downscaled and the observed day is measured using the 

root-mean-square (RMS) difference between the observed and model variable (eg, precipitation) 

field across the synoptic region. This matching is assessed on the GCM grid, and the analog days 

are selected from the observed record within 45 days of the day of the year of the model value 

being downscaled (e.g., Hidalgo et al. [2008]). So, for example, a model field of July 1 

precipitation can only be matched to precipitation from observed analog days between May 18 

and August 14, thereby ensuring that analogs are assigned from the correct season of the year.  

Step 3. Find the one best matching analog day at the local scale 

After this regional analog selection (step 2), the 30 analog days that most nearly match the model 

day being downscaled in the region about the point being downscaled (Fig. 2) have been 

identified. BCCA would at this point form a weighted average of the 30 analog days (selected 

over the entire domain in BCCA’s case) for the final downscaled field, which leads to problems 

with drizzle and muted extremes. LOCA, in contrast, avoids these problems by instead selecting 

only one of the thirty analog days to be the final analog day used for downscaling at a point. 
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Because of the procedure outlined above, all 30 analog day values provide relatively good 

matches the model day value being downscaled at the synoptic-scale – that is, the wider region 

about the point being downscaled (e.g., the pink region illustrated in Fig. 2 for Seattle). However, 

each of the 30 analog days varies the quality of its match at the fine target grid locations. LOCA 

therefore picks the single one of the 30 analog days that offers the best match to the model day 

variable being downscaled in the immediate vicinity of the point being downscaled (ie, each grid 

cell). 

To do this, bicubic interpolation is first used to interpolate the coarse grid model field and the 

coarsened observations of the 30 analog days to the fine grid resolution (1/16° here). Then, at each 

fine-resolution grid location, the single analog day from the pool of 30 analog days that minimizes 

the RMS difference between the interpolated model field and interpolated analog day in a square 

region of size (2r+1) fine-scale grid cells around the center of the grid point being downscaled is 

selected. Pierce et al. [2014] uses r = 10. 

Figure 3. Example analog day number with integer day number starting 1 Jan 1970 and ending 
31 Dec 2010. The GCM field being downscaled is precipitation on 1 Jan, 1950. This pattern is 
different for every model day being downscaled. Source: Pierce et al. [2014]. 

Since LOCA largely selects a different analog day at each fine grid location, the result is a jigsaw 

type pattern in the distribution of analog days (e.g., Figure 3). This pattern is not fixed in time, but 

rather changes for every model day being downscaled. 

Step 4. Construct final downscaled field using scale factors 

At the end of step 3, the final single analog day to use at a point has been identified. However the 

actual value found in the analog day is likely not identical to the value in the model day. In order 

to preserve the actual GCM values, the final selected analog day is scaled to match the original 

GCM value. For precipitation, the scale factor is the ratio between the interpolated fine-scale 

model field and the interpolated fine-scale analog day value. For temperature, the scale factor is 

the difference between the fine-scale model field and the interpolated fine-scale analog day value. 

Finally, as shown in Figure 3, consideration should be given to account for subdomain edge 

effects to reduce spatial discontinuity in the downscaled fields. In LOCA, any point that is 
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adjacent to a point that uses a different analog day for downscaling instead uses a linear 

combination of the originally selected analog day and the neighbor’s analog day. 

5.3.2 LOCA Bias Correction procedure 

A description of the bias correction method (Pierce et al. [2015]) that was used in developing the 

daily high resolution (1/16° here) climate projections of precipitation, maximum (minimum) 

temperature is presented here. 

The BCCA data product uses quantile mapping (QM) for bias correction. For example, given a 

model value to be bias corrected, the quantile of that value in the model’s historical time period 

distribution is first computed, then the bias-corrected output value is the observed value at that 

quantile. One of the main reasons for developing a new bias correction for LOCA is that QM 

does not preserve the original GCM-predicted climate change signal in any given model (see, 

e.g., Maurer and Pierce, 2014). Roughly speaking, in locations that have synoptic time variability 

on the order of 5-20 days, QM tends to reduce the climate change signal; where synoptic 

variability is lower, QM increases the change signal. One of the design objectives for the LOCA 

bias correction was to do a better job preserving each model’s original GCM-predicted climate 

change. 

The bias correction proceeds in three steps that are described below: 1) Preconditioning is used to 

correct the annual cycle of daily values; 2) The distributions of values is corrected using the 

EDCDFm [Li et al. 2010] scheme for temperature or the Presrat [Pierce et al. 2015] scheme for 

precipitation; 3) A frequency-dependent bias correction (FDBC; Pierce et al. 2015) is applied to 

improve the final representation of variability as a function of time scale. 

Preconditioning: Most bias correction schemes, including the ones used in BCSD, BCCA, and 

LOCA, consist of mapping from one CDF to another in various ways (see Pierce et al. 2015 for a 

summary of these methods), often via QM. However, such mappings cannot alter the sequencing 

of the ranks of the values they are applied to (where rank 1 is the largest value in the time series, 

rank 2 is the second largest value, etc.). For example, bias correction might change the value seen 

on the hottest day in the model’s time series from 43 C to 41 C, but it cannot change which day is 

the hottest day in the model’s time series. 

The foregoing implies that such methods cannot correct a misrepresentation of the annual cycle in 

the model’s output, since that would appear as an error in the average ranks. For example, if in 

the observations August is climatologically the hottest month (rank 1) and July is the second 

hottest month (rank 2), but these are reversed in the model, then no CDF mapping technique that 

is applied to the entire time series will be able to fix this misrepresentation, since the ranks of the 

values are not altered. 

To get around this problem, CDF mapping is typically applied in a restricted window of the 

model time series on the order of a month wide. For example, all July values might be bias 

corrected together, all August values bias corrected together, etc. (Sliding windows are also often 

used to avoid edge effects.) Although this works to correct the annual cycle, it leads to other 

problems since extreme phenomena are often not confined to a single month, but can occur at any 

time within a wider season. This leads to conflicting requirements, where a monthly or shorter 

window does the best job correcting the annual cycle, but a seasonal or longer window is best for 

correcting the extreme values. For example, California precipitation tends to be greatest in the 

winter; extreme precipitation days have occurred as early as November and as late as February. 

Similarly, extreme heat days in California have occurred as early as June and as late as 

September. Ideally all the “wet season precipitation extremes” and “hot season temperature 
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extremes” should be bias corrected together, which would require a window size of at least 

4 months. However using a 4-month wide BC window does a poor job correcting errors in the 

annual cycle (Pierce et al., 2015). 

LOCA avoids this problem by doing a simple preconditioning step before the CDF mapping. The 

model’s daily values are adjusted so that their daily means match the observed daily means, using 

an additive factor for temperature or multiplicative factor for precipitation. This preconditioning 

step rearranges the model’s time series of rank values so that, on average, it matches the 

observations. In other words, it corrects the annual cycle, so that both the model and observations 

have the same hottest month, the same second-hottest month, etc. This allows a wide (seasonal) 

window to be used in the next step, where the CDF mapping is applied. 

EDCDFm and Presrat: The CDF mapping technique used in LOCA is EDCDFm for 

temperature and Presrat for precipitation. They are conceptually similar techniques, although they 

differ in details. Each is equivalent to simple quantile mapping over the historical era. For future 

periods, EDCDFm constructs the bias-corrected CDF as the observed historical CDF plus the 

model-predicted future change computed at each quantile. In other words, the target CDF for the 

future conditions becomes the historical CDF added quantile-by-quantile to the CDF of future 

model changes. Presrat is similar, but constructs the bias-corrected CDF as the observed historical 

CDF times the model-predicted factor by which values at that quantile change in the future. 

Presrat also multiplies by a factor calculated to ensure that the future bias-corrected change in 

mean value matches the original model’s predicted change in mean value, and applies a zero-

precipitation threshold so that over the historical period, the number of zero-precipitation days in 

the model matches that observed. The CDF mapping is applied iteratively in three windows that 

are 91, 181, and 365 days wide, respectively. 

Frequency-dependent bias correction (FDBC): The frequency-dependent bias correction or 

FDBC is described in Pierce et al. [2015].  Pierce et al. [2015] show that using bias correction 

methods such as quantile mapping and cumulative distribution function transform can 

significantly alter the GCM’s mean climate change signal and alter the spectra of the time series 

to which they are applied in an unintended fashion.  A larger issue, however, is that GCMs are 

often limited in their ability to simulate variance across the frequency spectrum, meaning that 

their sequencing of variations at different time resolutions, from daily to decadal, may be 

substantially unrealistic compared to observed sequencing.  Many applications of climate 

information, such as water resources management, are highly sensitive to variations in climate 

sequences (e.g. wet and dry periods, storm characteristics).  This GCM deficiency motivated the 

development of the FDBC approach, which uses a digital filter in the frequency domain to adjust 

the amplitudes of the model variability in different frequency bands to better match the 

observations. Use of a frequency-based bias correction approach coupled with the LOCA spatial 

downscaling procedure is one means of preserving daily extremes and variability as they have 

appeared in the observational record in the final downscaled GCM data product. 

For each grid cell, normalized time series spectra are developed both for the GCM data and the 

aggregated Livneh et al. [2015] observed data covering periods from 2 days to 11 years in 

100 logarithmically-spaced frequency bands.  The GCM spectra are bias corrected as a ratio using 

the observed spectra, and converted back to a time series. 

5.3.3 The common 1x1 degree grid 

The entire downscaling process – GCM bias correction, then spatial disaggregation with LOCA – 

is repeated twice to produce the final 1/16th degree LOCA product: once for downscaling from 

the original coarse resolution GCM grid to a common 1x1 degree grid, and then again to 

10
 



 
 

  

 

 

 

  

 

   

  

   

 

  

  

 

  

  

 

  

 

  

 

 

 

 

 

 

 

 

   

 

 

 

 

 

   

 

downscale from the common 1x1 degree grid to the 1/16th degree grid. This approach is taken 

because different GCMs generally have different coarse resolutions, which can range from 1x1 

degrees or finer to 2.8x2.8 degrees. If only one iteration of LOCA were used, going directly from 

the GCM native grid to the 1/16th degree grid, then the models would be bias corrected only on 

their coarse resolution grids, which differ significantly across the different models. At worst, the 

coarsest resolution GCMs would be bias corrected using only 1/8th the information used to bias 

correct the finest resolution GCMs. This would introduce significant disparities across the 

models. 

The solution chosen here is to use the two-step process, so that all models are bias corrected on 

the same 1x1 degree grid before downscaling to 1/16th degree, and so receive the same observed 

information in the bias correction step. The more complicated two-step application of LOCA was 

used in preference to a simple interpolation from the coarse model grid to the 1x1 degree 

common grid because tests indicated that interpolation increased the spatial coherence of the 

modeled precipitation field, which is detrimental to the realism of runoff simulations that are 

driven primarily by the downscaled precipitation fields. 

As a last step, the 1/16° GCM projections are adjusted using a ratio for precipitation and 

difference for temperature such that their monthly means match-up with the fine-scale 

observations over the observed period. This step is required for technical reasons arising out of 

how LOCA handles climatology over the historical period. For future periods, the adjustments are 

chosen to maintain the property that the original GCM-predicted climate change signal is 

preserved. 

5.3.4 Model Calendars 

The various GCMs supply data on a variety of different calendars, so before the LOCA 

downscaling procedure was applied, the model data were interpolated to the common civil 

(standard) calendar. Most models use a non-leap year calendar, where leap days are omitted. In 

this case, leap days were constructed as needed by linear interpolation between the model’s values 

on Feb 28 and Mar 1. Since this affects only one day every four years, the overall impact of this 

interpolation on the final results of impact studies is likely to be small. 

A more significant problem is posed by the Hadley center models (HadGEM2-CC, 

HadGEM2-AO, and HadGEM2-ES here), which tend to use a 360-day per year calendar. In this 

case 5 days per year need to be added in non-leap years, and 6 days per year for leap years, to 

produce model data on a standard calendar. Rather than picking fixed days-of-the-year for 

interpolation, which might lead to discernable artifacts on those days, for each year a day was 

randomly selected from each 1/5th of the year to be inserted via interpolation. Leap days were 

always inserted on Feb 29, however. 

The list of days inserted is available for all models, so that users who are concerned that this 

procedure might affect their results can omit all interpolated days, at the cost of having to work 

with data on a variety of different calendars. 

5.4 Bias correction with spatial disaggregation (BCSDm) 

The basic steps of the BCSDm procedure to develop daily precipitation and temperature fields are 

described below, for complete details refer to, Bureau of Reclamation [2013]. 

11
 



 
 

 
    

  

 

  

 

 

 
  

  

 

 

 

    

 

 

 
 

  

 

   

 

  

  

 

   

  

 

  

    

   

 

  

  

    

   

 

 

 

  

1.	 As the first step, all GCMs are re-gridded from their native scale to a 1º (latitude) 

×1º (longitude) grid using bilinear interpolation.  Fine grid (1/8º [latitude] × 1/8º 

[longitude]) observations [Maurer et al., 2002] are also gridded to the same 1º×1º 

resolution.
 

2.	 Using the gridded 1º×1º GCM data, monthly biases in the GCMs are corrected using the 

coarsened observation grid, and applying quantile mapping on a grid cell by grid cell basis. 

This generates the bias-corrected GCM outputs at the coarse grid resolution of 1º×1º. 

3.	 Next, the bias-corrected GCM outputs are spatially disaggregated to the fine grid resolution 

of 1/8º (latitude) ×1/8º (longitude) using bilinear interpolation. 

4.	 An anomaly field is computed as the difference between the fine grid observations 

(1/8º×1/8º) and the coarsened (1º×1º) observations which are subsequently re-interpolated 

to the fine grid resolution of 1/8º ×1/8º. Anomalies are computed as a ratio for 

precipitation, and as a difference for temperature. 

5.	 The anomaly field (step 4) is then applied to the bias corrected GCM outputs (step 3) to 

derive the final set of monthly bias-corrected GCM outputs at the fine grid resolution 

(1/8º×1/8º). 

6.	 The fine resolution gridded monthly GCM values are subsequently disaggregated to daily 

fine resolution gridded values by selecting a historical month from the fine grid 

observations and then scaling it to match the monthly value at the respective grid cells.  The 

historical month is selected based on the similarity of monthly precipitation total only; i.e., 

no temperature information is used in the month selection. 

5.5 Bias correction with constructed analogs (BCCA) 

The basic steps of the BCCA procedure are described below, for complete details see Maurer et 

al.[2010] and for a summary, refer to Gutmann et al. [2014]. 

1. Correct daily biases in the coarse model grid using quantile mapping from the coarsened 

observation grid. 

2. Select 30 analog days from the entire grid of coarsened observations that have the best 

match with model data on a given day. The matches are evaluated over the entire domain 

being downscaled. 

3. Compute the optimal weights needed such that a weighted linear combination of the 

30 analog days has the best match with the model data over the entire domain.
 

4. Apply the same optimal weights to the fine observations from the same 30 analog days to 

obtain a downscaled field. 

6 Methodology 

Three variables were examined: daily precipitation (P, mm), minimum daily temperature 

(Tmin, ºC) and maximum daily temperature (Tmax, ºC). For each variable, statistics were computed 

for a historical period (1970-1999), future period (2040-2069) and the difference between 

historical and future periods denoting future change. Future periods are denoted as either “rcp45” 

for RCP 4.5 model runs (Appendix A), “rcp85” for RCP 8.5 scenarios (Appendix B) and “all 

projections” for a collection of both RCP 4.5 and RCP 8.5 projections (Section 7). The calculated 

statistics include: 
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1. 	 Mean dail y:  Mean over the historical or future period of  daily values.  

2.	  Max dail y:  Maximum  over the historical or future period of daily values.  

3.	  Mean monthly   (daily  value):  Mean  daily value by month  over the historical or future 

period.  

6.1  Difference maps  

Three types of difference maps are computed:  

1. 	 Differences between average observed datasets over the historical period.  

2. 	 Differences between historical and future averages for each downscaling method.  These  

difference maps show where climate projections are indicating increases or decreases.  

3. 	 Differences between the historical and future period averages for the difference between  

each method, eg. (LOCAfuture-LOCAhistorical) - (BCSDmfuture-BCSDmhistorical).  These indicate  

relative changes between the two methods.  For example, a positive difference between  

LOCA-BCSDm during the historical and future period would indicate LOCA produces a  

greater future change relative to BCSDm.  

6.2  Monthly basin average comparisons  

For the monthly data, five HUC4 basins were chosen within selected HUC2s in the west,  

and basin averages were computed for each projection over the historical and future period.  

Figure 4  shows the HUC4 basins used (in black)  with the encompassing  HUC2 (in grey).   These 

are  displayed  as boxplots with color indicating the month of the year and the spread showing  the 

range from m odels.  Differences between  models is also shown in the monthly  case,  the 

interpretation is the same as described in the previous section.  
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Figure 4:  HUC4 basins used in monthly basin average statistics; where, 1405 is the White-Yampa; 1504 is 
the Upper Gila; 1605 is the Central Lahontan; 1706 is the Lower Snake; 1809 is the Northern Mojave-Mono 

Lake. 
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6.3 Common Models 

Statistics were computed for 18 CMIP5 models which were common to all three downscaling 

methods. The models are listed in Table 2. For each model a single RCP 4.5 and RCP 8.5 

projection was used. Combining both RCP 4.5 and RCP 8.5 provides an ensemble of 

36 members. This ensemble is assumed to be a representative sample of the larger CMIP5 

ensemble. 

Table 2: CMIP5 Models included in this report 

CMIP5 Climate Modeling Group1 CMIP5 Climate Model ID 

Commonwealth Scientific and Industrial Research 
Organization and Bureau of Meteorology, Australia 

ACCESS1-0 

Beijing Climate Center, 
China Meteorological Administration 

BCC-CSM1-1 

Canadian Centre for Climate Modelling and Analysis CanESM2 

Community Earth System Model Contributors CESM1-BGC 

Centre National de Recherches Météorologiques/ 
Centre Européen de Recherche et Formation 

Avancée en Calcul Scientifique 
CNRM-CM5 

Commonwealth Scientific and Industrial Research 
Organization, Queensland Climate Change 

Centre of Excellence 

CSIRO-Mk3-6-0 

NOAA Geophysical Fluid Dynamics Laboratory 
GFDL-CM3 

GFDL-ESM2G 
GFDL-ESM2M 

Institute for Numerical Mathematics INM-CM4 

Institut Pierre-Simon Laplace IPSL-CM5A-MR 

Japan Agency for Marine-Earth Science and Technology, 
Atmosphere and Ocean Research Institute (The 
University of Tokyo), and National Institute for 

Environmental Studies 

MIROC-ESM 
MIROC-ESM CHEM 

Atmosphere and Ocean Research Institute (The University 
of Tokyo), National Institute for Environmental 

Studies, and Japan Agency for Marine-Earth Science 
and Technology 

MIROC5 

Max-Planck-Institut fü r Meteorologie 
(Max Planck Institute for Meteorology) 

MPI-ESM-LR 
MPI-ESM-MR 

Meteorological Research Institute MRI-CGCM3 

Norwegian Climate Centre NorESM1-M 
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6.4 Historical Observational datasets 

All the downscaling methods described above require a gridded observation dataset for calibration 

and to determine the fine grid resolution. The BCCA and BCSDm use the Maurer et al. [2002] 

dataset which is at 1/8º grid resolution. LOCA uses the Livneh et al. [2015] dataset which is at 

1⁄16º grid resolution. To perform the comparison, the Livneh et al. [2015] dataset was aggregated 

to the 1/8º Maurer et al. [2002] grid resolution. Both the Livneh et al. [2015] and the Maurer et 

al. [2002] data are based on the same underlying procedure so minimal differences are expected. 

To illustrate the differences between these two datasets, comparisons are shown for both annual 

mean and annual max over the historical period for precipitation (Figures 5 and 6), Tmax (Figures 

7 and 8) and Tmin (Figure 9). Note that some differences are large but these typically fall outside 

of the CONUS boundaries. 

The three major differences in the Maurer and Livneh data sets are: (i) spatial resolution, with the 

former coarser than the latter, which is expected to modestly influence the gridding results 

particularly in areas of topographical complexity, (ii) The station data are similar but not identical 

over CONUS, which would produce isolated ‘hot spots’,i.e. localized differences, while Livneh 

used a larger set of stations over Canada, and a much larger set of station data over Mexico that 

result in larger differences, and (iii) for precipitation, both data sets are scaled to match long-term, 

30-year climatological precipitation products that are ‘orographically aware’, such as the PRISM 

(Daly et al. [1997]) product over CONUS that assume greater precipitation with increasing 

elevation. However, over CONUS Maurer data are scaled to the 1961-1990 PRISM climatology, 

whereas Livneh et al. [2015] is scaled to the 1981-2010 PRISM climatology. More importantly, 

over Mexico and Canada (Columbia R. headwaters notwithstanding), the Maurer data are un­

scaled, whereas the Livneh data have been scaled to a Vose et al. [2014] 1981-2010 climatology, 

which would produce large differences. 

Figure 5: Mean daily precipitation from 1970-1999 for the Livneh dataset (left), the Maurer dataset 
(middle) and the difference (right). 
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Figure 6: Max daily precipitation from 1970-1999 for the Livneh dataset (left), the Maurer dataset 
(middle) and the difference (right). 

Figure 7: Mean daily Tmax from 1970-1999 for the Livneh dataset (left), the Maurer dataset (middle) and 
the difference (right). 

Figure 8: Period max daily Tmax from 1970-1999 for the Livneh dataset (left), the Maurer dataset (middle) 
and the difference (right). 
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Figure 9: Mean daily Tmin from 1970-1999 for the Livneh dataset (left), the Maurer dataset (middle) and the 
difference (right). 
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7 Results 

The results present 2 main types of graphics for 3 variables and 3 sets of projections, totaling 

24 figures.  Results are shown for both RCP 4.5 and RCP 8.5 projections in figures 10-17.  See 

Appendices A and B for RCP 4.5 and RCP 8.5 specific figures.  The statistics used in the figures 

are described in general in Section 6. Figures of the annual spatial distribution of precipitation, 

Tmax, Tmin, are followed by monthly boxplot figures for each variable in the same order. 

Figure 10 shows the grid cell-wise ensemble median of mean daily precipitation for the historical 

period (left column) and the future period (second column), using both RCP 4.5 and 

8.5 projections and the difference (third column). For the first three columns, rows correspond to 

each method: BCCA (top), BCSDm (middle) and LOCA (bottom). The fourth column show 

differences between future changes of each method. The rows in the fourth column represent 

differences between pairs of methods, LOCA-BCSDm (top row), LOCA-BCCA (middle row) and 

BCSDm-BCCA (bottom row). The HUC2 basins are superimposed on the difference maps to 

provide a reference for particular basins of interest.  For the mean daily precipitation difference 

between future and historical periods, all methods show general agreement in terms of spatial 

patterns. Comparing the difference maps in the fourth column, LOCA is generally drier than 

BCSDm except in the Rio Grande, and Texas-Gulf regions. This difference between LOCA and 

BCCA is somewhat less pronounced but point towards similar findings with BCSDm. The 

difference between BCSDm and BCCA shows that the BCSDm is somewhat wetter for the eastern 

U.S. basins. 

Figure 11 is for the ensemble median of max daily precipitation. The descriptions are the same as 

above. BCCA tends to produce somewhat lower max daily precipitation than LOCA or BCSDm. 

LOCA tends to produce greater increases in maxima in the southeast relative to the other methods. 

Figures 12 and 13 are the same as Figures 10 and 11 respectively, but for Tmax. All methods show 

general agreement in terms of spatial patterns and all indicate an increase in mean daily Tmax but 

can disagree by as much as 1ºC on the magnitude of future change. BCCA tends to show regional 

biases in mean daily Tmax relative to LOCA and BCSDm, with the latter methods in somewhat 

closer agreement (Figure 12). 

Figure 14 is the same as Figure 11 but for Tmin. The interpretations are similar to those in the 

previous paragraph for Tmax. 

Figure 15 shows boxplots of mean monthly (daily value) basin average precipitation for 5 HUC4s, 

one in each of the westernmost HUC2s. Each boxplot represents the spread of all ensemble 

members, with the color indicating the month for the historical period (first column), the future 

period (second column) and the difference (third column). The methods are shown in each row: 

BCCA (top row), BCSDm (middle row) and LOCA (bottom row). In this view there is practically 

no change in future precipitation on average over these basins. The rows in the fourth column 

represent differences between pairs of methods, LOCA-BCSDm (top row), LOCA-BCCA (middle 

row) and BCSDm-BCCA (bottom row).  Again, the difference in precipitation magnitude is 

practically negligible across the methods. 

Figures 16 is the same as Figure 15 but for Tmax. All methods generally indicate an increase in 

mean monthly (daily value) basin average Tmax. BCSDm tends to produce lower mean monthly 

(daily value) basin average Tmax than LOCA or BCCA.  Figures 17 is the same as Figure 15, but 

for Tmin. All methods generally indicate an increase in mean monthly (daily value) basin average 

Tmin and practically show no bias relative to each other. 
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8 Conclusions 

This report provides an overview and comparisons of three downscaling methods: BCCA, 

BCSDm and LOCA. The analysis conducted for this report was intended to present some salient 

features of these three datasets but not intended to be an exhaustive evaluation or comparison. 

For a more comprehensive comparison see Maurer et al. [2010], Pierce et al. [2014] and 

[Gutmann et al., 2014].  At the level of aggregation presented here, LOCA and BCSDm perform 

comparably as shown in the maps, but at the monthly time scale the box plots show a low bias in 

Tmax compared to both LOCA and BCCA. 
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Figure 10: Ensemble  median  of mean daily precipitation for the historical period (1970-1999, first column), the future  period  (2040-2069, second 
column), using both RCP 4.5 and RCP 8.5 and the difference  (third  column).  Rows  correspond to each method: BCCA  (top), BCSDm (middle) and 
LOCA (bottom).  The fourth column show differences between future changes of each method.  The rows in the fourth column represent differences 
between pairs of methods, LOCA-BCSDm (top row), LOCA-BCCA (middle row)  and BCSDm-BCCA (bottom row).  
  

22
 



 
 

 
 

 

Figure 11:  Ensemble median of max daily precipitation for the historical period (1970-1999, first  column), the future p eriod  (2040-2069, second column) 
using both RCP 4.5 and RCP 8.5 and the difference (third  column).  Rows correspond to each  method:  BCCA (top), BCSDm (middle) and  
LOCA (bottom). The fourth column show differences between future changes of each method.  The rows in the fourth column represent differences 
between pairs of methods, LOCA-BCSDm (top row), LOCA-BCCA (middle row)  and BCSDm-BCCA (bottom row).  
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Figure 12:  Ensemble median of mean daily  Tmax  for the historical period (1970-1999, first column), the future period  (2040-2069, second  column)  using 
both RCP 4.5 and RCP 8.5 and the difference (third  column).  Rows correspond to each method: BCCA (top),  BCSDm (middle) and LOCA (bottom).   
The fourth column show differences between future changes of each method.  The rows in the fourth column represent differences between pairs of 
methods, LOCA-BCSDm (top row), LOCA-BCCA (middle row) and BCSDm-BCCA (bottom row).  
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Figure 13:  Ensemble median of max daily  Tmax  for the historical period (1970-1999, first column), the future period (2040-2069, second  column) u sing 
both RCP 4.5 and RCP 8.5 and the difference (third  column).  Rows correspond to each method:  BCCA (top),  BCSDm (middle) and LOCA (bottom).  
The fourth column show differences between future changes of each method.  The rows in the fourth column represent differences between pairs of 
methods, LOCA-BCSDm (top row), LOCA-BCCA (middle row) and BCSDm-BCCA (bottom row).  
 
 



 
 

 

 

Figure 14:  Ensemble median of mean daily  Tmin  for the historical period (1970-1999, first column), the future period (2040-2069, second  column)  using 
both RCP 4.5 and RCP 8.5  and the difference (third  column).  Rows correspond to each method:  BCCA (top),  BCSDm (middle) and LOCA (bottom).  
The fourth column show differences between future changes of each method.  The rows in the fourth column represent differences between pairs of 
methods, LOCA-BCSDm (top row), LOCA-BCCA (middle row) and BCSDm-BCCA (bottom row).  
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Figure 15:  Boxplots of mean monthly  (daily  value)  basin average precipitation for 5 HUC4s, one in each of the westernmost HUC2s.   Each boxpl ot 
represents the spread of all ensemble members, with the color indicating the month for the historical period (1970-1999, first  column), the future period 
(2040-2069, second co lumn) and the difference (third  column).  The methods  are shown in each row:  BCCA (top row), BCSDm (middle row) and  
LOCA (bottom row).   The fourth column show differences  between future changes of each  method.  The rows in the fourth column represent differences 
between pairs of methods, LOCA-BCSDm (top row), LOCA-BCCA (middle row)  and BCSDm-BCCA (bottom row).  
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Figure 16  Boxplots of mean monthly basin average (daily value) Tmax  for 5 HUC4s, one in each of the westernmost HUC2s.   Each boxplot  represents the 
spread of all ensemble members, with the color indicating the month for the historical period (1970-1999, first column),  the future period (2040-2069, 
second  column) and the difference (third  column).  The methods  are shown in each row:  BCCA (top row),  BCSDm (middle row) and LOCA (bottom row).   
The fourth column show differences between future changes of each method.  The rows in the fourth column represent differences between pairs of 
methods, LOCA-BCSDm (top  row), LOCA-BCCA (middle row) and BCSDm-BCCA (bottom row).  
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Figure 17:  Boxplots of mean monthly (daily value)  basin average  Tmin  for 5 HUC4s, one in each of the westernmost HUC2s.  Each boxplot  represents the  
spread of all ensemble members, with the color indicating the month for the historical period (1970-1999, first column),  the future period (2040-2069, 
second  column) and the difference (third  column).  The methods are shown in each row:  BCCA (top row),  BCSDm (middle row) and LOCA (bottom row).  
The fourth column show differences between future changes of each method.  The rows in the fourth column represent  differences between pairs of 
methods, LOCA-BCSDm (top row), LOCA-BCCA (middle row) and  BCSDm-BCCA (bottom row).  





 
 

 

 

 

 

 

      
  


 Appendix A - RCP 4.5 graphics
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Figure  A1: Ensemble  median  of  mean  daily  precipitation  for  the  historical p eriod  (1970-1999,  first  column),  the  fut ure  period  (2040-2069,  second  

column),  using  RCP  4.5  projections and  t he  difference  (third  column).   Rows correspond  to  each  method:  BCCA  (top),  BCSDm  (mid dle)  and   

LOCA  (bottom).   The  fourth  column  show  differences between  fut ure  changes of  each  method.   The  rows in  the  fourth  column  represent  differences  

between  pairs of  methods,  LOCA-BCSDm  (top  row),  LOCA-BCCA  (middle  row)  and  BCSDm-BCCA  (bottom  row).  
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Figure  A2:   Ensemble  median  of  max  daily precipitation  for  the  historical  period  (1970-1999,  first  column),  the  future  period  (2040-2069,  second  column)  

using  RCP  4.5  projections and  the  difference  (third  column).   Rows correspond  to  each  method:   BCCA  (top),  BCSDm  (middle)  and  LOCA  (bottom).  The  

fourth  column  s how  differences between  fut ure  changes of  each  met hod.   The  rows in  t he  fourth  column  represent  differences be tween  pairs of  methods,  

LOCA-BCSDm  (top  row),  LOCA-BCCA  (middle  row)  and  BCSDm-BCCA  (bottom  row).  

  



 
 

 

Figure  A3:   Ensemble  median  of  mean  daily Tma x   for  the  historical  period  (1970-1999,  first  column),  the  future  period  (2040-2069,  second  column)  using  

RCP  4.5  projections and  the  difference  (third  column).   Rows correspond  to  each  met hod:  BCCA  (top),  BCSDm  (middle)  and  LOCA  (bottom).   The  fourth  

column  show  differences between  f uture  changes of  each  method.   The  rows in  the  fourt h  column  represent  differences between  pairs of  methods,  

LOCA-BCSDm  (top  row),  LOCA-BCCA  (middle  row)  and  BCSDm-BCCA  (bottom  row).  
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Figure  A4:   Ensemble  median  of  max  daily Tmax   for  the  historical  period  (1970-1999,  first  column),  the  fut ure  period  (2040-2069,  second  column)  using  

RCP  4.5  projections and  the  difference  (third  column).   Rows correspond  to  each  met hod:  BCCA  (top),  BCSDm  (middle)  and  LOCA  (bottom).   The  fourth  
column  show  differences between  f uture  changes of  each  method.   The  rows in  the  fourt h  column  represent  differences between  pairs of  methods,  
LOCA-BCSDm  (top  row),  LOCA-BCCA  (middle  row)  and  BCSDm-BCCA  (bottom  row).  
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Figure  A5:   Ensemble  median  of  mean  daily Tmin   for  the  historical  period  (1970-1999,  first  column),  the  fut ure  period  (2040-2069,  second  column)  using  

RCP  4.5  projections and  the  difference  (third  column).   Rows correspond  to  each  met hod:   BCCA  (top),  BCSDm  (middle)  and  LOCA  (bottom).  The  fourt h  
column  show  differences between  f uture  c hanges of  each  method.   The  rows in  the  fourt h  column  represent  differences between  pairs of  methods,  
LOCA-BCSDm  (top  row),  LOCA-BCCA  (middle  row)  and  BCSDm-BCCA  (bottom  row).  
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Figure  A6:   Boxplots of  mean  mont hly (daily value)  basin  average  precipitation  for  5  HUC4s,  one  in  each  of  the  westernmost  HUC2s.   Each  boxplot  
represents the  spread  of  RCP  4.5  ensemble  members,  with  the  color  indicating  the  mont h  for  the  historical  period  (1970 -1999,  first  column),  the  future 
period  (2040-2069,  second  column)  and  the  difference  (third  column).   The  methods are  shown  in  each  row:   BCCA  (top  row),  BCSDm  (middle  ro w)  and  
LOCA  (bottom  row).   The  fourth  column  show  differences between  fut ure  changes of  each  met hod.   The  rows in  t he  fourth  column  represent  differences 
between  pairs of  methods,  LOCA-BCSDm  (top  row),  LOCA-BCCA  (middle  row)  and  BCSDm-BCCA  (bottom  row).  



 
 

 
Figure  A7:   Boxplots of  mean  mont hly  (daily  value)  basin  average  Tmax   for  5  HUC4s,  one  in  eac h  of  the  westernmost  HUC2s.  Each  boxplot  represents 

the  spread  of  RCP  4.5  ensemble  members,  with  the  color  indicating  the  mont h  for  the  historical  period  (1970 -1999,  first  column),  the  fut ure  period   
(2040-2069,  second  column)  and  the  difference  (third  column).   The  methods are  shown  in  each  row:   BCCA  (top  row),  BCSDm  (middle  row)  and   
LOCA  (bottom  row).   The  fourth  column  show  differences between  fut ure  changes of  each  met hod.   The  rows in  t he  fourth  column  represent  differences 
between  pairs of  methods,  LOCA-BCSDm  (top  row),  LOCA-BCCA  (middle  row)  and  BCSDm-BCCA  (bottom  row).  
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Figure  A8:   Boxplots of  mean  mont hly (daily value)  basin  average  Tmin   for  5  HUC4s,  one  in  each  of  the  westernmost  HUC2s.  Each  boxplot  represents 

the  spread  of  RCP  4.5  ensemble  members,  with  the  color  indicating  the  mont h  for  the  historical  period  (1970 -1999,  first  column),  the  fut ure  period   
(2040-2069,  second  column)  and  the  difference  (third  column).   The  methods are  s hown  in  each  row:   BCCA  (top  row),  BCSDm  (middle  row)  and   
LOCA  (bottom  row).   The  fourth  column  show  differences between  fut ure  changes of  each  met hod.   The  rows in  t he  fourth  column  represent  differences 
between  pairs of  methods,  LOCA-BCSDm  (top  row),  LOCA-BCCA  (middle  row)  and  BCSDm-BCCA  (bottom  row).  
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 Appendix B - RCP 8.5 graphics
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Figure  B1:   Ensemble  median  of  mean  daily precipitation  for  the  historical  period  (1970-1999,  first  column),  the  futur e  period  (2040-2069,  second  column),  

using  RCP  8.5  projections and  the  difference  (third  column).   Rows correspond  to  each  method:  BCCA  (top),  BCSDm  ( middle)  and  LOCA  (bottom).   The  
fourth  column  show  differences between  fut ure  changes of  each  met hod.   The  rows in  t he  fourth  column  represent  differences be tween  pairs of  methods,  

LOCA-BCSDm  (top  row),  LOCA-BCCA  (middle  row)  and  BCSDm-BCCA  (bottom  row).  
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Figure  B2:   Ensemble  median  of  max  daily precipitation  for  the  historical  period  (1970-1999,  first  column),  the  fut ure  Period  (2040-2069,  second  column)  
using  RCP  8.5  projections and  the  difference  (third  column).   Rows correspond  to  each  method:   BCCA  (top),  BCSDm  (middle)  and  LOCA  (bottom).   The  
fourth  column  s how  differences between  fut ure  changes of  each  met hod.   The  rows in  t he  fourth  column  represent  differences be tween  pairs of  methods,  
LOCA-BCSDm  (top  row),  LOCA-BCCA  (middle  row)  and  BCSDm-BCCA  (bottom  row).  
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Figure  B3:   Ensemble  median  of  mean  daily Tmax   for  the  historical  period  (1970-1999,  first  column),  the  fut ure  period  (2040-2069,  second  column)  using  

RCP  8.5  projections and  the  difference  (third  column).   Rows correspond  to  each  met hod:  BCCA  (top),  BCSDm  (middle)  and  LOCA  ( bottom).   The  fourth  
column  show  differences between  f uture  c hanges of  each  method.   The  rows in  the  fourt h  column  represent  differences between  pairs of  methods,  
LOCA-BCSDm  (top  row),  LOCA-BCCA  (middle  row)  and  BCSDm-BCCA  (bottom  row).  
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Figure  B4:   Ensemble  median  of  max  daily Tma x   for  the  historical  period  (1970-1999,  first  column),  the  future  period  ( 2040-2069,  second  column)  using  

RCP  8.5  projections and  the  difference  (third  column).   Rows correspond  to  each  met hod:  BCCA  (top),  BCSDm  (middle)  and  LOCA  (bottom).   The  fourth  
column  show  differences between  f uture  changes of  each  method.   The  rows in  the  fourt h  column  represent  differences between  pairs of  methods,  
LOCA-BCSDm  (top  row),  LOCA-BCCA  (middle  row)  and  BCSDm-BCCA  (bottom  row).  
 



 

 

 

Figure  B5:   Ensemble  median  of  mean  daily Tmin   for  the  historical  period  (1970-1999,  first  column),  the  fut ure  period  (2040-2069,  second  column)  using  

RCP  8.5  projections and  the  difference  (third  column).   Rows correspond  to  each  met hod:   BCCA  (top),  BCSDm  (middle)  and  LOCA  (bottom).  The  fourt h  
column  show  differences between  f uture  changes of  each  method.   The  rows in  the  fourt h  column  represent  differences between  pairs of  methods,  
LOCA-BCSDm  (top  row),  LOCA-BCCA  (middle  row)  and  BCSDm-BCCA  (bottom  row).  
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Figure  B6:   Boxplots of  mean  mont hly (daily value)  basin  average  precipitation  for  5  HUC4s,  one  in  eac h  of  the  westernmost  HUC2s.   Each  boxplot  
represents the  spread  of  RCP  8.5  ensemble  members,  with  the  color  indicating  the  mont h  for  the  historical  period  (1970-1999,  first  column),  the  future  
period  (2040-2069,  second  column)  and  the  difference  (third  column).   The  methods are  shown  in  each  row:   BCCA  (top  row),  BCSDm  (middle  row)  and   
LOCA  (bottom  row).   The  fourth  column  show  differences between  fut ure  changes of  each  met hod.   The  rows in  t he  fourth  column  represent  differences 
between  pairs of  methods,  LOCA-BCSDm  (top  row),  LOCA-BCCA  (middle  row)  and  BCSDm-BCCA  (bottom  row).  
 



 
 
Figure  B7:   Boxplots of  mean  mont hly (daily value)  basin  average  Tmax   for  5  HUC4s,  one  in  eac h  of  the  westernmost  HUC2s.  Each  boxplot  represents 

the  spread  of  RCP  8.5  ensemble  members,  with  the  color  indicating  the  mont h  for  the  historical p eriod  (1970-1999,  first  column),  the  fut ure  period   
(2040-2069,  second  column)  and  the  difference  (third  column).   The  methods are  shown  in  each  row:   BCCA  (top  row),  BCSDm  (middle  row)  and   
LOCA  (bottom  row).   The  fourth  column  show  differences between  fut ure  changes of  each  met hod.   The  rows in  t he  fourth  column  represent  differences 
between  pairs of  methods,  LOCA-BCSDm  (top   row),  LOCA-BCCA  (middle  row)  and  BCSDm-BCCA  (bottom  row).  
 

B-7



 
 
Figure  B8:   Boxplots of  mean  mont hly (daily value)  basin  average  Tmin   for  5  HUC4s,  one  in  each  of  the  westernmost  HUC2s.  Each  boxplot  represents 

the  spread  of  RCP  8.5  ensemble  members,  with  the  color  indicating  the  mont h  for  the  historical p eriod  (1970-1999,  first  column),  the  fut ure  period   
(2040-2069,  second  column)  and  the  difference  (third  column).   The  methods are  s hown  in  each  row:   BCCA  (top  row),  BCSDm  (middle  row)  and   
LOCA  (bottom  row).   The  fourth  column  show  differences between  fut ure  changes of  each  met hod.   The  rows in  t he  fourth  column  represent  differences 
between  pairs of  methods,  LOCA-BCSDm  (top  row),  LOCA-BCCA  (middle  row)  and  BCSDm-BCCA  (bottom  row).  
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